ΔNp73 overexpression promotes resistance to apoptosis but does not cooperate with PML/RARA in the induction of an APL-leukemic phenotype
نویسندگان
چکیده
Here, we evaluated whether the overexpression of transcriptionally inactive ΔNp73 cooperates with PML/RARA fusion protein in the induction of an APL-leukemic phenotype, as well as its role in vitro in proliferation, myeloid differentiation, and drug-induced apoptosis. Using lentiviral gene transfer, we showed in vitro that ΔNp73 overexpression resulted in increased proliferation in murine bone marrow (BM) cells from hCG-PML/RARA transgenic mice and their wild-type (WT) counterpart, with no accumulation of cells at G2/M or S phases; instead, ΔNp73-expressing cells had a lower rate of induced apoptosis. Next, we evaluated the effect of ΔNp73 on stem-cell self-renewal and myeloid differentiation. Primary BM cells lentivirally infected with human ΔNp73 were not immortalized in culture and did not present significant changes in the percentage of CD11b. Finally, we assessed the impact of ΔNp73 on leukemogenesis or its possible cooperation with PML/RARA fusion protein in the induction of an APL-leukemic phenotype. After 120 days of follow-up, all transplanted mice were clinically healthy and, no evidence of leukemia/myelodysplasia was apparent. Taken together, our data suggest that ΔNp73 had no leukemic transformation capacity by itself and apparently did not cooperate with the PML/RARA fusion protein to induce a leukemic phenotype in a murine BM transplantation model. In addition, the forced expression of ΔNp73 in murine BM progenitors did not alter the ATRA-induced differentiation rate in vitro or induce aberrant cell proliferation, but exerted an important role in cell survival, providing resistance to drug-induced apoptosis.
منابع مشابه
Rara haploinsufficiency modestly influences the phenotype of acute promyelocytic leukemia in mice.
RARA (retinoic acid receptor alpha) haploinsufficiency is an invariable consequence of t(15;17)(q22;q21) translocations in acute promyelocytic leukemia (APL). Retinoids and RARA activity have been implicated in hematopoietic self-renewal and neutrophil maturation. We and others therefore predicted that RARA haploinsufficiency would contribute to APL pathogenesis. To test this hypothesis, we cro...
متن کاملTargeting of PML/RARa Is Lethal to Retinoic Acid–Resistant Promyelocytic Leukemia Cells
Acute promyelocytic leukemia (APL) cells, containing the t(15;17) rearrangement, express the fusion protein, PML/ RARa. Clinically, patients respond to all-trans retinoic acid (ATRA) through complete remissions associated with myeloid maturation of leukemic cells. This clinical ATRA response of APL is linked to PML/RARa expression. Unfortunately, these remissions are transient and relapsed APL ...
متن کاملCytogenetic and FMS-Like Tyrosine Kinase 3 Mutation Analyses in Acute Promyelocytic Leukemia Patients
Background: The secondary genetic changes other than the promyelocytic leukemia-retinoic acid receptor (PML-RARA) fusion gene may contribute to the acute promyelocytic leukemogenesis. Chromosomal alterations and mutation of FLT3 (FMS-like tyrosine kinase 3) tyrosine kinase receptor are the frequent genetic alterations in acute myeloid leukemia. However, the prognostic significance of FLT3 mutat...
متن کاملInhibition of Promyelocytic Leukemia (PML)/Retinoic Acid
The fusion protein promyelocytic leukemia (PML)/retinoic acid receptor (RAR)a is tightly linked to the pathogenesis of acute promyelocytic leukemia (APL); hence, it represents a tumor-associated, transformationrelated molecule. In this study, three anti-PML adamantyl-conjugated peptide nucleic acid (PNA) oligomers previously described as in vitro inhibitors of PML/RARa translation were combined...
متن کاملPML/RARa fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype
The role of fusion proteins in acute myeloid leukemia (AML) is well recognized, but the leukemic target cell and the cellular mechanisms generating the AML phenotype are essentially unknown. To address this issue, an in vitro model to study the biologic activity of leukemogenic proteins was established. Highly purified human hematopoietic progenitor cells/stem cells (HPC/HSC) in bulk cells or s...
متن کامل